5天学习AI Agent:Day 1 智能体与大语言模型简介

5天学习AI Agent:Day 1 智能体与大语言模型简介

Day 1: Introduction to AI Agents and Large Language Models (LLMs)

Goal: Gain a foundational understanding of AI agents, their key components, and the role LLMs (like GPT-4) play in forming the core intelligence of AI agents.

Topics:What are AI Agents?

Definition: 

  • AI agents are autonomous systems that perceive their environment, make decisions, and take actions to achieve specific goals. They can be either task-driven (e.g., virtual assistants) or adaptive, continuously learning from their experiences.

Key Concepts:

  • Perception: How agents gather information from their environment.
  • Action: How agents perform tasks or communicate.
  • Learning: Agents’ ability to improve performance through experience (via reinforcement learning, supervised learning, etc.).
  • Decision-Making: The logic or algorithms agents use to decide the next step or action.

Basic Concepts of Agents in AI:

  • Perception: The sensory input or the way agents understand their surroundings. For LLM-based agents, this could be text, images, or other forms of input.
  • Action: The responses or outputs agents give based on the input and their goals.
  • Learning: How agents can improve over time using various learning models.
  • Decision-Making: The process through which agents select actions based on their knowledge and objectives.

How LLMs like GPT-4 Form the “Brain” of AI Agents:

LLMs as the Brain: Large Language Models, like GPT-4, process text, generate responses, and make decisions, making them well-suited to serve as the core intelligence of AI agents.

Transformer Architecture: LLMs are based on the transformer model, which processes information in parallel and captures long-term dependencies in text.

Pre-Training and Fine-Tuning:

  • Pre-Training: The model is trained on massive datasets to learn general language understanding.
  • Fine-Tuning: The pre-trained model is further trained on specific tasks (e.g., customer service) to refine its responses for real-world applications.

第一天:智能体和大语言模型简介

目标:掌握智能体(AI Agents)的基础概念,了解其核心组成部分,以及大语言模型(如 GPT-4)在智能体扮演的核心智能角色。

1.什么是智能体(AI Agents)?

定义:智能体是一种自主系统,能够感知环境、做出决策并执行相应的行动,以实现特定目标。智能体可以是任务驱动型的(如虚拟助手),也可以是自适应型的,能够通过持续学习不断优化自身能力。

关键概念:

  • 感知(Perception)
  • 行动(Action)
  • 学习(Learning)
  • 决策(Decision-Making)

2.智能体的基本概念:

  • 感知(Perception):指智能体获取环境信息的方式。对于基于大语言模型(LLM)的智能体,感知可以表现为文本输入、图像或其他形式的数据输入。
  • 行动(Action):指智能体基于输入信息和自身目标做出的响应或输出。
  • 学习(Learning):指智能体如何利用各种学习方法(如监督学习、强化学习)不断优化自身的能力和表现。
  • 决策(Decision-Making):指智能体如何根据已有知识和目标选择最优行动策略。

3.大语言模型(如GPT-4)如何成为智能体的“核心大脑”:

LLMs作为“大脑”:大语言模型(如GPT-4)能够处理文本、生成响应、执行推理任务,因此非常适合作为AI代理的核心智能模块。

Transformer结构:大语言模型基于Transformer架构,能够并行处理信息,并捕捉文本中的长距离依赖关系,从而提高语言理解和生成能力。

预训练与微调(Pre-Training and Fine-Tuning):

  • 预训练(Pre-Training):大模型在大规模数据集上进行训练,以学习通用的语言理解能力。
  • 微调(Fine-Tuning):在特定任务(如客服、医疗咨询等)上对预训练模型进行进一步训练,使其在特定领域的应用更具针对性和精准性。