数据科学

Jan
10

新的聊天机器人ChatGPT擅长和不擅长的

重要的是不要被这种炒作冲昏了头脑,因为最终这并不是一个新的感知智能——它只是一个经过更好训练的大型语言模型。大型语言模型随着每一个版本的发布而变得更好,而这个版本无疑在真正帮助人们并节省人们时间的方面开辟了新的天地。但在许多情况下,这种新模型的实用性会失效,依赖它将是愚蠢的。让我们来看看一些它擅长和不擅长的领域。

By Zhang Bonnie | Blog
DETAIL
Jan
10

关于时间序列分析(TSA),你需要知道这15个词

一个时间序列,就是在不同时间戳收集的数据点序列,而这些数据点序列则是以相同的时间间隔从相同的数据源收集的连续测量。利用这一技术,我们可以使用这些按时间顺序收集的读数来监测一段时间内的变化趋势。时间序列模型可以是单变量,也可以是多变量——当因变量是单个时间序列时,使用单变量时间序列模型;当有多个因变量时,可以使用多变量时间序列模型。

By Zhang Bonnie | Blog
DETAIL
Jan
04

只会Pandas?来学习这25种Pandas变SQL的方法,让你的数据分析更得心应手!

毫无疑问,SQL和Pandas都是数据科学家处理数据的强大工具。一般来说,SQL是一种用于管理和操作数据库中数据的语言,而Pandas是Python中的数据操作和分析库。此外,SQL通常用于从数据库中提取数据,在Python中进行分析(主要使用Pandas)。它的工具和功能齐全,能很好地处理表格数据,如数据操作、数据分析和可视化等。将SQL和Pandas一起使用,我们就能清理、变换和分析大型数据集,创建复杂的数据管道和模型,这对作为数据科学家大有裨益,也因此,我们必须精通它们。在本文中,我将带你一步一步走,一起将最常见的Pandas操作变为SQL查询。

By Zhang Bonnie | Blog
DETAIL
Jan
01

带你读懂Go语言

Go是Google于2009年创建的一种编程语言。作为一种静态语言,它的语法类似于C,专为高性能和并发程序而设计。Go通常用于构建Web应用、分布式系统等其他类型的软件。优点如下:易于学习和使用(Go的语法简单干净,很容易上手)、高性能(Go是一种编译语言,可以生成快速高效的代码)、伸缩性和并发性强(Go内置了相关系统,帮助处理大型工作负载和工作扩展)、标准库性能全(Go拥有一个性能全面的标准库,能为开发应用提供特性和功能便利)、“后劲足”(Go的开发群体庞大又活跃,他们在不断推进语言的发展进步,为用户提供各种帮助)

By Zhang Bonnie | Blog
DETAIL
Dec
26

0经验?一样能成为一名成功的数据科学顾问!

当你提交了300份简历,终于得到一个基础岗位的应聘机会后,还有500个应聘者等着与你竞争这个岗位。但是,不管怎么说,同样是在数据科学行业工作,为什么不去成为一名数据科学顾问呢?当你可以自立门户时,为什么要与那么多应聘者作斗争呢?7分钟时间,让本文告诉你如何成为一名数据科学顾问。

By Zhang Bonnie | Blog
DETAIL
Dec
11

提升数据科学水平的五个必备知识

如果你对重新研究数学有点犹豫,这是个好消息。成为一名成功的数据科学家,你不需要正式的数学学位,也不需要成为抽象证明的专家。你真正需要的是数据科学中能实际应用的统计概念知识,(例如设计用户研究、运行假设测试、有效使用机器学习模型等)。

By Zhang Bonnie | Blog
DETAIL
Dec
01

以数据科学家或机器学习工程师的身份逐步构建数据管道

在面试或作为数据科学家时,我们经常被要求构建一个能够对连续流动数据执行机器学习预测的应用程序。我们的老板经常期望我们将按时交付结果,并使用机器学习和数据科学来生成这些高质量的预测。在本文中,我们将研究数据管道以及如何构建它们,并确保我们在构建机器学习预测方面做得还不错。本文将逐步介绍如何构建重要的数据管道。

By Zhang Bonnie | Blog
DETAIL
Nov
24

【Python-数据科学】Pandas Basics速查表(2023)

Pandas library是Python中最强大有效的library之一。它基于NumPy构建,为 Python编程语言提供了易于使用的数据结构和数据分析工具。查看下面的内容,了解Pandas提供的各种功能和工具。Pandas数据结构、删除、排序&排名、检索Series/DataFrame信息、Dataframe统计、查询、函数应用、数据对齐、输入/输出。

By Zhang Bonnie | Blog
DETAIL